首页> 外文OA文献 >A DNS study of the ignition of lean PRF/air mixtures with temperature inhomogeneities under high pressure and intermediate temperature
【2h】

A DNS study of the ignition of lean PRF/air mixtures with temperature inhomogeneities under high pressure and intermediate temperature

机译:在高压和中温下稀有PRF /空气混合物在温度不均匀的情况下着火的DNS研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two-dimensional direct numerical simulations (DNSs) of ignition of lean primary reference fuel (PRF)/air mixtures at high pressure and intermediate temperature near the negative temperature coefficient (NTC) regime were performed with a 116 species-reduced mechanism to elucidate the effects of fuel composition, thermal stratification, and turbulence on PRF homogeneous charge compression-ignition (HCCI) combustion. In the DNSs, temperature and velocity fluctuations are superimposed on the initial scalar fields with different PRF compositions. In general, it was found that the mean heat release rate increases slowly and the overall combustion occurs rapidly with increasing thermal stratification regardless of the fuel composition. In addition, the effect of the fuel composition on the ignition characteristics of PRF/air mixtures was found to be significantly reduced with increasing thermal stratification. Chemical explosive mode (CEM) and displacement speed analyses verified that nascent ignition kernels induced by hot spots due to a high degree of thermal stratification usually develop into deflagration waves rather than spontaneous auto-ignition at reaction fronts and as such, the mean heat release rate becomes more distributed over time. These analyses also revealed that the fuel composition effect vanishes as the degree of thermal stratification is increased because the deflagration mode of combustion, of which propagation characteristics are nearly identical for different PRF/air mixtures, becomes more prevailing with increasing degree of thermal stratification. Ignition Damköhler number was proposed to quantify the successful development of deflagration waves from nascent ignition kernels; for cases with large ignition Damköhler number, turbulence with high intensity and short timescale can advance the overall combustion by increasing the overall turbulent flame area instead of homogenizing initial mixture inhomogeneities.
机译:通过减少116种物种的机理对稀薄的主要参考燃料(PRF)/空气混合物在高压和中间温度附近接近负温度系数(NTC)的情况下进行点火的二维直接数值模拟(DNS)燃料成分,热分层和湍流对PRF均质充量压缩点火(HCCI)燃烧的影响。在DNS中,温度和速度波动会叠加在具有不同PRF成分的初始标量场上。通常,发现与燃料成分无关,随着热分层的增加,平均放热速率缓慢增加并且整个燃烧迅速发生。另外,发现随着热分层的增加,燃料组合物对PRF /空气混合物的着火特性的影响显着降低。化学爆炸模式(CEM)和位移速度分析证明,由于高度的热分层,热点引起的新生点火核通常会形成爆燃波,而不是在反应前沿自发自燃,因此平均放热率随着时间的流逝变得越来越分散。这些分析还表明,随着热分层程度的增加,燃料成分效应消失,这是因为随着热分层程度的增加,燃爆模式(对于不同的PRF /空气混合物其传播特性几乎相同)的爆燃模式变得更加普遍。提出了点火达姆霍勒数来量化新生点火核爆燃波的成功发展。对于大点火Damköhler数的情况,高强度和短时间尺度的湍流可以通过增加整体湍流火焰面积而不是使初始混合物不均匀性均化来促进整体燃烧。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号